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The withdrawal of layered fluids from an open tank through a hole centred on the 
bottom is investigated numerically under the assumption of potential flow. A fully 
cubic-spline nonlinear axisymmetric boundary-integral-method scheme with the 
built-in boundary conditions, which effectively reduces the numerical errors a t  the 
intersection lines where the tank wall and the density interfaces meet, is used. Two 
cases are studied : (i) the tank contains only one fluid with a free surface ; (ii) the tank 
contains two fluids having different densities with a distinct interface and a free 
surface. 

The numerical results show two different phenomena, depending upon the drain 
rate and initial conditions. When the tank is rapidly drained, a dip forms a t  the 
centre of the lower interface and extends into the hole very quickly, as observed by 
Lubin & Springer (1967). For a slowly draining tank, a jet forms in the centre of the 
depression region. This jet can either shoot up or move down, depending on the 
initial conditions. 

1. Introduction 
When a fluid is withdrawn from an open circular tank through a finite sink located 

at the centre of the bottom, sudden formation of a dip is often observed in the centre 
of the free surface. The axisymmetric withdrawal of both one- and two-layer fluids 
from a circular tank has been studied experimentally and analytically by Lubin & 
Springer (1967), who found a relation between the critical height, the drain rate and 
the density ratio. They observed that the drain rate is nearly constant throughout 
the draining process until a dip is formed. The formation of the dip is so quick that 
i t  appears to extend into the sink almost instantly. The analytic formula obtained 
by Lubin & Springer is in excellent agreement with their experimental data, in spite 
of the fact that  only the Froude number based on the drain rate, which is assumed 
a constant, and the density ratio are included. Their analytic solution is the limit for 
large initial depth of the lower surface and small sink. 

The purpose of the present paper is to study the axisymmetrical evolution of a free 
surface and an interface in a circular tank under a constant drainage rate. The 
emphasis is on the transient surface configurations when the mean depth of the lower 
surface, which is the interface in a two-layer fluids system or the free surface in a one- 
layer fluid system, becomes small, and nonlinear effects are strong. We show an 
unexpected phenomenon: for small drain rate, a jet appears in the centre of the 
depression region in the centre of the lower surface owing to  the off-centre surface 
particles squeezing those fluid particles near the centre of the lower surface. 

It is also of interest to examine the effects of factors such as the size of the sink, 
the initial depths of the layers of fluids, etc. on the subsequent motion. It is 
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FIQURE 1.  Two-dimensional dimensionless flow configuration (front view of the tank). 

conceivable that those factors may modify considerably, or even completely change, 
the surface configurations. Zhou (1989) studied this problem numerically and found 
for the one-layer-fluid case that when a dip forms, the computed critical heights 
agree with Lubin & Springer’s analytic solution only for moderate values of the 
Froude number. For large Froude numbers the computed values are considerably 
smaller than their analytic values. The discrepancies increase with the Froude 
numbers, and vary with the sink sizes and the initial depths of the free surface. For 
the two-layer-fluid case the differences are even larger. It was also found that there 
are strong free-surface oscillations as predicted theoretically by Saad & Oliver (1964) 
and Zhou & Graebel (1989). 

For the present problem, the primary quantities of interest are the surface values 
such as the locations of the surfaces, surface velocities, etc. The boundary integral 
method (BIM) is a very efficient numerical method for such problems. Axisymmetric 
BIM schemes have been developed and applied by a number of researchers, including 
Baker, Meiron & Orszag (1984) and Dommermuth & Yue (1987). In this article we 
use a nonlinear axisymmetric BIM scheme similar to that of Dommermuth & Yue 
(1987), with the important modification that in the present model, both the velocity 
potential and the normal velocity on the boundary are represented by cubic splines 
with built-in boundary conditions which ensure a high order of smoothness of the 
solution. This scheme greatly reduces numerical errors a t  the point where the free 
surface or interface intersect the wall. 

2. Mathematical formulation 
We consider axisymmetric flows of both one or two layers of fluids in a circular 

tank. The lower fluid is withdrawn from the tank through a hole with finite radius 
placed in the centre of the tank bottom. Both fluids are assumed to be inviscid and 
incompressible. The top surface is taken as a free surface. On both the free surface 
and the interface, surface tension is neglected. Since the aim of the present research 
is to investigate the unsteady nonlinear motions of the free surface and interface 
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under drainage, we require that the upper fluid be lighter than the lower one, so that 
the stratification is stable. The drain rate is taken to be a constant, Q ,  and the flow 
is started in a discontinuous manner. It is expected that an impulsive start of surface 
motions would give the maximum surface distortion (Zhou & Graebel 1989). 

We choose the radius R of the tank as the characteristic length, T = R 3 / Q  as the 
characteristic time and U = Q/R2 as the characteristic velocity. The potential is 
scaled by Q/R. In  dimensionless units, the radius of the tank is thus unity. The 
dimensionless sink radius is a. 

Let subscripts 1 and u denote the quantities pertinent to the lower and the upper 
fluid, respectively. With all quantities in their respective non-dimensional forms, the 
velocity potentials satisfy the Laplace equation 

W j  = 0 ( ( r ,  2) E q ) ,  ( 1 )  
where j = e, u ;  wt and w, are the volumes as shown in figure 1. The boundary 
conditions on the tank wall are 

where vo(r )  is the normal velocity distribution a t  the drain. The choice of the function 
vo( r )  is restricted by global volume conservation, which requires that 

2n w,(r)rdr = 1 .  I (4) 

Obviously, the choice of defining wo(r) is not unique. The criterion adopted in this 
paper is that wo should not degenerate the overall accuracy and the smoothness of the 
solution. To be compatible with the cubic-spline approximation, we use 

Pressure can be obtained from the Bernoulli equation 

where pij = pi/pe so that pt = 1 and pi, = p with /3 = pu/pi. For a statically stable 
stratification, p < 1.  Setting p = 0 in (6), we obtain the dynamic boundary condition 
on the free surface yf 

(7) 
- + ~ I V ~ u 1 2 + P - 2 z  W!l = o ((r,z)Eyr). 
at 

Because surface tension and viscosity are neglected, the dynamic condition on the 
interface is that the pressure on both sides of the interface yi be equal. Thus a t  the 
interface we require that 
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In the above, F is the Froude number defined by 
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The kinematic condition on the interface is that particles of the upper fluid cannot 
penetrate into the lower fluid, and vice versa. This means that the velocity 
components normal to the interface cannot be discontinuous, and hence 

n.V(#u-#&) = 0 ( ( r ,z )EYi)>  (10) 

where n denotes the unit vector normal to yi. 
The material points of the free surface are chosen as the Lagrangian points which 

represent the free surface. The position vector of the free-surface Lagrangian marker, 
denoted as sf, satisfies 

The choice of the interfacial Lagrangian points is somewhat arbitrary. Here we 
take the velocity of the Lagrangian markers, denoted by si, to be a weighted average 
of the upper and lower velocities at the interface. Thus 

in which x i ( s i , t )  is the position of the interfacial Lagrangian point and ui(si ,t)  is 
defined by 

with 0 < a < 1. If a is taken as either one or zero, the interfacial Lagrangian marker 
will follow a material point of either the lower or upper fluid on the interface. Both 
a = 0.5 and 1 were tried, and only slight differences in the surface shape were found. 
The numerical results reported in this paper are obtained using a = 1 .  

According to (7),  the potential that follows a Lagrangian point on the free surface 
is advanced in time by 

ui(si>t)  = aV#&+ (1-a)V#u,  (13) 

(14) a#U(sf, t, - 11V$u12 - F - 2 2  
- 2  f (  f , t ) ,  at 

in which zf(sf, t) is the z-coordinate of the Lagrangian point sf. 
Define 

~ ( s i ,  t) = #&(si, t) -P#u(si, t ) ,  (15) 

where, if /3 = 1 ,  ,u is the conventional dipole strength. With the velocity of the 
interfacial Lagrangian point given by (13), the evolution equation for the interfacial 
potential is 

in which zi(sir t )  is the z-coordinate of the Lagrangian point si. 
Since the flow is started impulsively, the initial conditions are 

#,(sf, 0 )  = 0,  pfsi, 0 )  = 0. (17) 

The equations governing a one-layer fluid tank are readily obtained from the above. 
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3. Numerical implementation 
Let aw, and aw, be the boundary curves of we and wu, respectively, but without 

the segments on the centreline, i.e. aw, = Yi+B,(t)+B,, ao, = yi+y,+B,(t) as shown 
in figure 1.  

By virtue of Green's theorem, we can write the general solution of ( 1 )  in the form 

in which 
(4n, when ( r ,  z )  E w j ,  

a,(r, z ,  t )  = 2n, when ( r ,  z )  is a regular node, (19) I 
[n, when (r,  z )  is an intersection point. 

Here the contact angle between the surfaces and the wall is +7c (see Appendix). Also 

where K is the complete elliptical integral of the second kind, and b = 2rr,, c = 
( r+ r , )2+ (z -zs )2 .  The image term in Ge(r , z ;rs , zs )  is introduced to make aG,(r,O;rs, 
z,)/az = 0. Therefore, the integral J B O  $,(aG,/an) rs dl, in (18) is eliminated. This yields 
a substantial numerical advantage by reducing the size of the resulting algebraic 
equation, and also by increasing the accuracy of the numerical solution, since $, 
takes very large values in the sink region (0 < r < a) .  

3. I. Boundary integral equation solutions 
To discretize (18), the boundary curves yi, yf, BJt) and B,(t) are each divided into a 
number of small elements such that the intersection points where the tank wall and 
the interface or the free surface meet, are the end points of the elements. On each 
boundary curve the solutions $ and a$/an are approximated by cubic splines. Then, 
(18) is collocated a t  nodes which are the end points of the elements. There is no need 
to discretize the tank bottom B, since a$,/& on B, is known by virtue of (3) and (5). 

Special care is taken at the intersection points, where the slopes are discontinuous, 
to avoid large numerical errors. A brief description of the difficulties near such 
intersection points is given by Dommermuth & Yue (1987). For two-dimensional 
problems, Lin (1984) developed an approach in which both the stream and the 
potential functions a t  the intersection point are specified in the Cauchy integral 
equation. Dommermuth & Yue (1987) applied the same idea to axisymmetric flow 
problems. In  essence, their idea postulates that the potential at the intersection point 
is continuous. 

For the present problem, we adopt a similar postulate ; that the potential is non- 
singular at the intersection of the wall with either the interface or the free surface. 
Furthermore, we postulate that the velocity is continuous a t  the intersection points. 
We assume that both the overall and the local accuracy near the intersection points 
can be improved by imposing the continuity of the velocity at the intersection points 
as well as a t  the centre of the surfaces. It is worth noting that a linear interpolation 
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of potential cannot have the velocity continuous at  the centre and the intersection 
points without auxiliary compatibility conditions. With the above postulations and 
with the contact angle between a surface (either an interface or a free surface) and 
the wall a right-angle when surface tension is neglected, we specify the boundary 
conditions for the cubic splines as follows: (a )  owing to axisymmetry, at  the centre 
of the interface or the free surface (where r = 0 ) ,  and the slopes of the surface line is 
zero, the radial derivatives of the surface potentials and the radial derivatives of the 
normal velocities on the surface are zero ; ( b )  a t  the intersection points, the radial 
derivatives of the surface potentials are zero, the radial derivatives of the surface 
normal velocities are zero, and the vertical velocity on the tank wall are equal to the 
surface normal velocities; ( c )  a t  the joining point between BL(t) and B, the vertical 
velocity is equal to zero. These boundary conditions are necessary and sufficient to 
uniquely determine the cubic splines. The cubic-spline solution satisfying the above 
specified boundary conditions is then C1 continuous a t  the intersection points, where 
the slopes are discontinuous, and is C2 continuous on the regular boundary, where the 
slopes are continuous. 

A solution satisfying the above compatibility conditions can still exhibit larger 
than acceptable errors near the intersection points. These errors are caused by the 
local singular behaviour of the kernel functions G,(T, z ;  rs, 2,) and aGj(T, z ;  yS, zs)/&. It 
can be shown that G, is logarithmically singular, and that aG,lan has both a pole and 
a logarithmic singularity where ( r ,  z )  - ( rs,  zs) .  To ensure numerical accuracy, we 
desingularize the integrals by subtracting out the singular terms. The singular parts 
of the integrals then are calculated analytically. The remaining regular parts of the 
integrals are evaluated numerically, using Gaussian quadrature. Comparison with a 
test example having a known exact solution shows that this approach eliminates 
local errors near the intersection point (Zhou 1989). 

In the present formulation the unknowns on the free surface are the normal 
velocities. At the interface the unknowns are $8, q5u and the normal velocities. On the 
tank wall, the unknowns are the potentials. At the intersection point between the 
wall and the free surface, the unknown is the normal free-surface velocity, and the 
potential is considered known. At the intersection point where the interface and the 
wall meet, the unknowns are $e, q5u and the interfacial normal velocity. The known 
quantity on the free surface is the potential, and on the interface ,u is known, 

For a two-layer fluid, the connection between the two equations resulting from 
(18) is provided by (10) and (15). Numerical integrations are performed by using an 
8-point Gaussian quadrature scheme. 

In all of our computational cases, the surface nodal distributions are initially 
equispaced. For the present problem, it was found convenient to equally reposition 
the nodes on B,(t) and B,(t) each time (18) is solved. Therefore, the nodes on the tank 
wall (except at the intersection points) are not necessarily Lagrangian points. Unlike 
nonlinear surface-wave-breaking cases (Longuet-Higgins & Cokelet 1976), the 
Lagrangian points become sparse near the centre where a depression appears owing 
to the quick development of the dip. 

The method described above differs only in details from BIM used by others, but 
the details are significant. Dommermuth & Yue (1987) used cubic splines for the free 
surface and body shapes, but only linear functions for velocity potential $ and 
normal velocity $, on the boundary. Experience with a simple test problem (Zhou 
1989), for which the exact solution is known and the free surface is flat, has shown 
that linear interpolation for potential and its normal derivative on the boundary 
without auxiliary equations can produce intolerable local errors a t  the intersection 
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point where the type of boundary condition changes and the slope is discontinuous. 
The numerical solution does not converge to the exact one a t  the intersection point. 
Similar difficulties occur at the centre. The difficulties with the linear interpolation 
of q5 and q5n are that it cannot meet the compatibility conditions a t  the centre and 
the contact point, which are very important in the present problem. The use of cubic 
splines for velocity potential and normal velocity along with the cubic-spline 
approximation for boundary in the present method thus results in a substantial 
improvement in accuracy over the use of linear interpolations for boundary values 
of q5 and 9,. Furthermore, owing to the extremely large curvature in the centre of the 
free surfaces, we feel that cubic-spline approximations for q5 and cjhn are necessary. 
The use of cubic splines as the interpolating functions also greatly reduces the 
number of nodes on the boundary, hence reducing the size of resulting matrix. Since 
the present scheme is a direct one, the time for solving the resulting algebraic 
equations is proportional to N 3 ,  where N is the total number of the boundary nodes. 
Thus, fully cubic-spline solutions greatly reduce the computational cost. 

Longuet-Higgins & Cokelet (1976) dealt with a two-dimensional problem in an 
infinite domain, hence did not have to contend with intersection points or vanishing 
Jacobians. They used Lagrange polynomials in a transformed domain. They 
encountered sawtooth instabilities which had to be removed by filtering. Such 
instabilities do not arise in the present work unless the time/or space steps were too 
large. Thus filtering was not necessary. Since their domains were infinite and the 
drains were not present, direct comparison is not possible. 

3.2. Time integration and numerical stability 

Knowing $u on the free surface and p on the interface, (18) along with (9) and (15) 
can be solved for the normal velocities of both the surfaces and the interfacial values 
of q5( and 9,. The surface tangential velocities can be obtained by differentiating the 
surface potentials, and Vq5( and Vq5u on both the surfaces can be computed. Then, 
( l l ) ,  (12), (14) and (16) can be updated in time to find surface values for q5u, y and 
the locations of the surface Lagrangian points a t  the next time instance. The time 
integrations were performed using either a fourth-order Runge-Kutta scheme or a 
fourth-order Adam-Bashford-Moulton predictor-corrector scheme with the starting 
values computed by the fourth-order Runge-Kutta scheme. Both methods gave 
virtually the same results. 

For the axisymmetric free-surface problems, Dommermuth & Yue (1987) gave a 
linear stability criterion for the fourth-order RungeKutta  scheme which is 
equivalent to 

At < F ($r, 
in which At is the timestep size and Ax is the local grid spacing. This criterion 
indicates that for the same grid spacing, timestep size must be reduced a t  smaller F 
values, to avoid temporal instability. 

The inequality (21) is only a necessary, not a sufficient, condition for numerical 
stability. Therefore, it can only be considered as an upper bound for the timestep size 
At under a given local grid size Ax. For example, for the one-layer-fluid case when 
F = 50, h, = 5 and a = 0.05, sawtooth instability in the free-surface shape was found 
when 41 initially equal-spaced nodes are used to represent the free surface (which 
results in Ax = 0.025) and At = 0.1. This sawtooth instability disappears when At is 
reduced to 0.02. For this case, (21) gives the upper bound At,,, = 12.6. 
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In  the present problem, the velocities near the centre of the interface in a two-layer 
fluid tank or the free surface in a one-layer fluid tank become large when the centre 
becomes close to the sink. These large velocities also cause numerical instability even 
when (18) is solved exactly. We adopt an approach similar to that used by Longuet- 
Higgins & Cokelet (1976) and later by Jansen (1986) ; that the timestep be such that 
the displacement of a surface material point be less than the minimum size of the 
surface grid spacing. 

The accuracy of the numerical solution of (18) is checked by computing, a t  each 
time (18) is solved, the volume flux across the boundaries, given by 

( j  = e, u). 

Here, 52, is evaluated by approximating a#,/an by a cubic spline whose nodal values 
are found through solving (18), and then the integration is performed by Gaussian 
quadratures. From continuity considerations, we have Q,(t) = Qu(t )  = 0. 

The overall accuracy is further monitored by calculating, a t  each timestep, the 
mean levels of the interface and the free surface according to 

c c 

Yi 

Here, h,(t) and hf(t) are calculated by approximating xi and zf by cubic splines and 
then integrating analytically. Continuity considerations require that 

where h,(O) and h,(O) are the initial mean depths of the free surface and the interface, 
respectively. Since the velocities will be large when the surface is near the sink, time 
integration can cause errors even though (18) is solved accurately. Thus Ef(t), Ei(t), 
52,(t) and 52,(t) serve as monitors of the accuracy of the time integration. Our 
experiences indicate that (22) and (24) are reliable criterions for accuracy and 
stability although they are only necessary conditions. 

4. Numerical results 
4.1. One-layer Jluid with a free surface 

The non-dimensional parameters that determine the flow are the Froude number F 
defined by (9), the initial depth h, of the free surface and the radius a of the sink. The 
motion of the free surface strongly depends on these parameters. It is found that the 
free-surface configurations are nearly independent of h, when h, is larger than unity. 
This is due to the fact that the free surface remains nearly flat until the mean depth 
is small (less than unity). Our numerical computations found numerical instability 
when the time and spatial resolution were not sufficiently fine. This sawtooth type 
of instability can occur even when the mean height of the free surface is large (larger 
than unity) and the free surface is nearly flat. Once the numerical instability occurs 
it will not be damped unless artificial filtering or smoothing is applied. The growth 
rate of the sawtooth instability is small when the mean depth is larger than unity, and 
i t  increases rapidly when the mean depth becomes small and nonlinearity becomes 
dominant. 
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FIGURE 2. Time development of the free surfaces; F = 1.0, h, = 1.0, a = 0.2 a t  t = 0.25, 0.5, 
0.75, 1.0, 1 . 1 ,  1.2, 1.21, 1.21975. 
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FIGURE 3. Time development of the free surfaces; F = 0.5, h, = 1.0, a = 0.2 a t  t = 0.25, 0.5, 
0.75, 1.0, 1.25, 1.5, 1.6, 1.7, 1.72, 1.7248. 

Figures 2 and 3 show the transient profiles of the free surface under different values 
of F but with the same initial height h, and drain radius a. They clearly show the 
sudden formation of a dip in the centre of the free surface. While no sign of the free- 
surface oscillation is seen in figure 2, it  is clearly seen in figure 3. This indicates that 
a sufficiently large P (say larger than 1.0) can suppress the drainage-initiated free- 
surface oscillations as shown theoretically by Saad & Oliver (1964) and Zhou & 
Graebel (1989). The final configurations of the free surface in these two cases are 
similar despite the fact that they experience different motion histories. This suggests 
that when the mean level of the free surface is small, the sink influence dominates, 
and quickly damps out any existing oscillations. 
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FIQURE 4. Time development of the free surfaces; F = 0.1, h, = 0.35, a = 0.05 a t  t = 0, 0.01, 
0.02, 0.03, 0.04, 0.05, 0.06, 0.065, 0.06625. 
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FIGURE 5. Time development of the free surfaces; F = 0.1, h, = 0.35, a = 0.2 at t = 0, 0.02, 

0.04, 0.06, 0.08, 0.1, 0.102, 0.104, 0.106. 

A rather surprising result is seen in figures 5 and 9. The difference between figures 
4 and 5 is the radius of the sink. The radius a in figure 5 is four times as large as that; 
in figure 4. This results in a maximum draw-down velocity occurring a t  the centre of 
the sink, which in figure 4 is sixteen times as large as that in figure 5. This implies 
that if F is sufficiently small, the draw-down provided by the sink is weak compared 
to gravity. The distances between surface points near the centre are compressed by 
the rest of the surface as shown in figure 8. Two totally different phenomena are thus 
possible depending on flow parameters: (i) a dip as shown in figure 4;  (ii) a reverse 
jet as shown in figures 5 and 9. Since F and h, are the same in figures 4 and 5, a smaller 
a is seen to result in a greater draw-down of the free surface. Equivalently, one can 
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FIGURE 6. Close-up of the reverse jet region of figure 5. 0 < r < 0.2 and t = 0.04, 0.05, 0.06, 
0.07, 0.08, 0.09, 0.1, 0.102, 0.104, 0.106, 0.1065. 

0.344 

0. 

FIGURE 7. Velocity field when a dip forms; F = 0.1, h, = 0.35, a = 0.1 at t = 0.064. 

say that a more concentrated draw-down force overcomes the squeezing of the near- 
centre surface points by the off-centre surface points, and a pulling down of the 
centre of the free surface. Thus a sufficiently small a can still give rise to a dip as 
demonstrated in figure 4. If a is not sufficiently small, the squeezing together of the 
near-centre surface points decelerates the centre. Consequently, it generates a reverse 
jet as shown in figures 5 and 9. 

Figure 6 shows a close-up view of the jet. Figure 8 shows that the velocity of the 
surface is roughly of constant magnitude when the jet is well developed. How small 
a must be to ensure a dip depends on F as well as h,,. Figures 7 and 8 show the velocity 
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FIGURE 8. Velocity field when a reverse jet forms; F = 0.25, h, = 1.0, a = 0.05 at t = 1.9. 
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FIGURE 9. Time development of free surfaces; F = 0.25, h, = 1.0, a = 0.05 at t = 0.25, 0.5, 0.75, 
1.0, 1.25, 1.5, 1.75, 1.8, 1.85, 1.9, 1.95, 1.973. 

fields corresponding to the dip and the jet cases, respectively. Figure 7 shows that 
when a dip is about to form, the surface velocities near the centre are dominant while 
those away from the centre are small. This is the kinematic reason why the dip 
develops so rapidly as shown by Lubin & Springer (1967). Figure 8 shows that in the 
case where a reverse jet appears, the maximum surface velocity occurs a t  the trough 
of the free surface. If the trough velocity is sufficiently large, the centre must be 
pushed upward owing to the strong compression, hence a reverse jet will form. 

The effect of h, on whether a dip or a jet forms is similar to that of a. Figure 9 shows 
free-surface profiles which have the same parameters as those shown in figure 8. 
Figure 9 shows a weak jet whose tip moves down with the mean surface, while figure 
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FIQURE 10 (u, b ) .  For caption see page 524. 
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5 shows a strong jet which shoots upward. A weak jet occurs when the initial depth 
h, is large, and the drainage-initiated free-surface oscillations occur in the early stage 
of the motion. Comparing figure 7 with figure 8, we can see that the oscillations make 
the surface velocity distribution more uniform, hence the compression IS weaker. 
This is possibly the reason why the jet in figure 9 moves down while the jet in figure 
5 moves up. 

We also calculated the vertical downward acceleration at the centre of the free 
surface. In  all our calculations, we found that a dip appears only when the 
dimensionless downward acceleration exceeds F-’, or equivalently when the 
dimensional downward acceleration exceeds the gravitational acceleration g. In the 
cases when a dip forms, the centre of the free surface first moves down a t  a nearly 
constant velocity, and then quickly transits to an exponentially accelerating motion 
when its acceleration is near FP2 (Zhou 1989). I n  cases where a jet occurs, this 
downward acceleration never exceeds F-2. This suggests that  the dip formation 
mechanism may be due to a local flow instability analogous to Rayleigh-Taylor 
instability (Taylor 1950), since the fictitious force induced by an accelerating fluid 
resembles a gravitational force. Supporting evidence may be found in a two- 
dimensional numerical simulation of Rayleigh-Taylor instability by Baker ( 1983). 
We can see that the dips shown in figures 2 and 3 qualitatively resemble the long 
spikes of the lower free surface as shown in figure 4 of Baker’s paper, and both grow 
very rapidly. It is interesting that in Baker’s simulation, a small reverse jct forms on 
the upper free surface. 

In figures 10 and 11, constant pressure lines are shown a t  various times for a dip 
and a jet case, respectively. The top zero pressure line in each case is the free surface. 
In both cases, the pressure far away from the centreline is nearly hydrostatic with 
almost constant gradient, and there is a large pressure gradient near the sink which 
draws fluid into the sink. It is seen that besides the free-surface line, there is another 

FIGURE 10. Contours of constant pressure (dip case) : F = 1 .O, h, = 1 .O, a = 0.2. 
(a )  t = 0;  ( b )  t = 0.5; ( c )  t = 1.0. 
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FIGURE 11. Contours of constant pressure (jet case); F = 0.1, h, = 0.35, a = 0.2. 
(a) t = 0, ( b )  t = 0.05; (c) t = 0.1. 

zero pressure line inside the flow region at early times when the dip or the jet has not 
formed. Figures 10(a, b) and 11 (a, b)  show that a t  early times, the patterns of 
constant pressure lines are similar for both cases. However, there are substantial 
differences in the pressure distribution a t  a later stage which result in the different 
phenomena. 

For the dip case, figure 10 shows that a pressure distribution monotonically 
decreasing from the free surface develops on the centreline, and the internal zero 
pressure line merges with the free surface. The pressure gradient on the centreline is 
downward and draws down the centre of the free surface, hence a dip results. Figures 
2 and 10 suggest that the starting time for the formation of the dip is that when the 
internal zero pressure line merges with the free surface. The merging of the two zero 
pressure lines is the necessary condition for the formation of a dip. 

For the jet case, figure 11 shows that the two zero pressure lines cannot merge into 
one, and a local maximum pressure develops on the centreline. This is consistent with 
the jet. This type of local maximum pressure was previously observed by Baker et al. 
(1987) for a case of Rayleigh-Taylor instability. When the upward pressure gradient 
resulting from the local pressure high is weak, i.e. smaller than the gravitational 
force, the resulting jet will move down as shown in figure 9. 

As described in $3.2, the accuracy in solving (18) was checked by computing the flux 
across the free surface. The error in the flux across the free surface remained a t  about 
lop7 to  lop6 for most of the calculation, and increased to a t  the end of the 
calculation when the tip region of the free surface started to develop very large 
curvatures. The overall accuracy is represented by the error in the mean level of the 
free surface. This error stayed a t  around lop6 to lop5, increasing to lop4 at the end of 
a calculation. At the end of a computation, when either the dip reaches the sink or 
curvatures became too extreme (in the case of jet formation), the surface curvature 
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FIGURE 12. Comparison of z-coordinate of the centre ( r  = 0) (-, 41 nodes; ---, 126 nodes) and 
the intersection point ( r  = 1 )  (-----, 41 nodes; ....., 126 nodes). F = 0.1, h, = 0.35, a = 0.2. 

and the velocity near the centre of the free surface were very large. Extremely small 
timesteps and locally small boundary elements were needed. Our computer code 
broke down when the jet became well developed. 

To test convergence, figure 12 compares trajectories of the centre (r = 0) and the 
intersection (r = 1 )  points of the free surface for the jet case using 41 and 126 initially 
equally spaced surface nodes, respectively. It is seen that convergence is excellent. 
The potentials for both runs a t  the centre a t  t = 0.106 is 1.2, and the difference is less 
than 0.04 YO. 

4.2. Two-layer fluid with both an interface and a free surface 
For the two-layer-fluid case, the parameters that govern the flow are the Froude 
number F ,  the sink radius a, the density ratio /3 and the initial depths h, and h, of 
the lower and upper layers, respectively. 

It should be noted that if /I = 1, no vorticity can be created on the interface 
because viscosity and surface tension are neglected and the density is constant (Yih 
1979, p. 63). Before the flow starts there is no flow, and thus no interfacial vorticity. 
This means that, when /3 = 1, the interface is no different to other material surfaces, 
and the interfacial dynamic condition (16) reduces to a trivial one. The flow thus 
reduces to the one-layer fluid flow described in $4.1. When /3 + 1, the sudden start 
of the flow creates an initial interfacial vorticity. This initial vortex strength 
distribution must be found by solving equation (18). In the same manner, there is an 
initial jump in the potential (dipole strength) across the interface. 

In this section, we show results which illustrate how the two surfaces interact with 
each other. Figures 13 and 14 show two cases where F ,  a ,  h, and hu are the same, but 
/3 is varied. Figure 13 shows the profiles of the interface and the free surface for a 
slightly stratified configuration (/3 = 0.9). It shows that when a dip forms on the 
interface, the free surface undergoes severe oscillations. Figure 14 shows the case of 



528 &.-N. Zhou and W.  P. Graebel 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

i- \v/ I 

Y 
01 I 

FIQURE 13. Time development of ---, the free surface and -, the interface; F = 0.25, a = 0.1, 
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FIQURE 14. Time development of ---, the free surface and --, the interface; F = 0.25, 
a=0 .1 , /?=0 .5 ,h ,=0 .65andh ,=0 .1at t imet=0 .3 ,0 .5 ,0 .69 .  

a large stratification (p = 0.5).  It clearly shows the sign of travelling waves on the 
free surface. In this case, a jet forms on the interface. 

The physical mechanism as to why different values of p cause quite different 
surface motions can be explained by the interfacial vorticity. Figure 15 shows the 
interfacial vortex strength distribution corresponding to the two cases of figures 13 
and 14. The vortex strength is the difference in the tangential velocities across the 
interface. When the vorticity is in the clockwise direction, it is positive. It can be seen 
that the interfacial vortex strength for large stratification (,8 = 0.5) is larger than 
that for small stratification (p = 0.9). This indicates that larger stratification induces 
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FIQURE 15. Time development of the interfacial vortex strength corresponding to the two cases 
shown in figures 13 and 14 where -, p = 0.5, t = 0.4; ---, /3 = 0.5, t = 0.55; ....., p = 0.9, 
t = 0.4; ---, p = 0.9, t = 0.55. 

larger interfacial vortices. For the case /3 = 0.5, the maximum vortex strength 
appears at  the trough of the interface. It is well known that a vortex sheet tends to 
roll up if there are no constraints. If we imagine a fictitious flow which possesses the 
same interfacial vortex distribution as that induced by the sink, but the flow is 
without a sink, owing to the roll-up the centre of the interface would go up to form 
a jet. However, the sink tends to pull down the centre of the interface. Whether a dip 
or a jet would occur is determined by whether the sink or roll-up is the dominant 
feature. If the sink is dominant, a dip will form as shown in figure 13. Otherwise, a 
jet appears as shown in figure 14. It can be seen that when a dip develops on the 
interface, the vortex strength near the centre is negative, which aids in pulling the 
centre of the interface into the sink. The negative vortex strength indicates that the 
inward (pointing towards the centreline) tangential velocity of the upper fluid on the 
interface is greater than that of the lower fluid on the interface. When a jet forms, 
the vortex strength is positive everywhere, indicating that particles of lower fluid on 
the interface move towards the centreline faster than do upper fluid particles on the 
interface. 

It has been assumed in simple analytical analysis, e.g. Lubin & Springer (1967) and 
Harleman, Morgan & Purple (1959) that the pressure on an interface is approximately 
hydrostatic. Our numerical calculations found that this is correct only if the 
interfacial curvature is small (see Zhou 1989). When a dip develops on the interface, 
the pressure distribution also exhibits a dip in the centre of the interface. This 
pressure dip develops very quickly, as does the surface dip. Thus the assumption that 
the interfacial pressure is hydrostatic is no longer correct after an appreciable 
depression occurs on the interface. 
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5. Concluding remarks 
A fully cubic-spline nonlinear BIM scheme has been developed to simulate the 

axisymmetric flow motion of a free surface and an interface inside a circular tank 
with a drain in the centre of the tank bottom. The BIM scheme is specially designed 
to ensure C2 continuity on the regular boundary, and C' continuity at the contact 
points of the tank wall and the interfaces, where two different types of boundary 
conditions join together and there is no unique normal vector. A special treatment 
of the contact points, similar to the approaches used by Lin (1984) and 
Dommermuthy & Yue (1987), is extended to this high-order scheme. The high degree 
of smoothness of the numerical solution proves to be very effective in reducing the 
numerical errors, especially a t  the geometrically singular points and the confluence 
points. This numerical scheme could be extended to include surface tension with the 
adequate modification of the dynamic boundary conditions on the free surface and 
the interface, and with an evolution equation for the contact angle which, in the 
presence of surface tension, is no lo%er 90". 

The numerical results show that the drainage causes a depression in the centre of 
the lower surface, which is either the interface (two-layer) or the free surface (one- 
layer), The later configurations of the lower surface can be either a dip which extends 
into the sink, or a reverse jet. Whichever forms depends on all of the parameters in 
the problem. It is shown that for certain flow initial conditions, a reverse jet can form 
in the depression region. We suggest that the formation of the dip which extends 
into the sink is due to a type of flow instability analogous to Rayleigh-Taylor 
instability. This instability results in the subsequent catastrophic change in the 
surface shape, i.e. the quick extension of the dip into the sink. 

The present BIM scheme results in a Fredholm equation of the first kind. The 
resulting algebraic equation has to be solved by direct matrix inversion, which is 
expensive and needs large amounts of computer storage. Iterative methods are more 
efficient and need less computer storage and time. We have also tried using a velocity 
formulation in order to formulate a Fredholm equation of the second kind which can 
be solved interactively. A vortex distribution on the interface and a source 
distribution on the tank wall were used. At the contact points, the vortex and the 
source strengths satisfy a compatibility equation which ensures that the velocities at 
the contact points are finite. The formulation was used to solve a test problem. The 
results showed that the numerical solution had large errors, especially a t  the contact 
point. Research on a formulation which would lead to the Fredholm equation of the 
second kind is of practical importance. 

The present numerical scheme breaks down after a jet is well developed. It would 
be of physical interest to see the later stages of the evolution of the jet. 
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MSM-8707646. Q. N. Z. would like to thank Dr W. Schultz for financial support 
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Appendix. The contact angle at the intersection points 
Assuming that the fluid is inviscid and that surface tension is negligible, both 

surface and wall boundary conditions can be applied a t  the point where a material 
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surface intersects a wall. The velocity a t  that intersection point, must be single valued. 
We show here that the contact angle between the wall and a material surface is 90". 

Suppose that zs(r ,  t )  is an axisymmetric free surface. In the Lagrangian description, 
the momentum equation is av 1 

-- - --Vp-ge,, 
at P 

where V(a ,  t )  = u(a ,  t )  e,+w(a, t )  e, and e,, e, are the unit vectors in the directions of 
r- and z-axes respectively, and a is the Lagrangian identifier of the surface material 
point. 

Let s = s, e, + s, e, be the tangent vector at the surface, and take the inner product 
of s and (A 1). We have then 

au aw 1 

at at p 
sr-+sz- = - -s .  vp-gs , .  

Since surface tension is neglected, the pressure on the free surface is constant. Thus 
s - V p  = app/as = 0 on the free surface. Applying (A 2) a t  the intersection point, gives 

where we have assumed that a t  the wall u = 0, and consequently, au/at = 0. 
Equation (A 3) suggests two possibilities. One is that 

s, = 0 at the intersection point. fA 4at 

- + g  = 0 a t  the intersection point. (A 4b) at 

The other is that aw 

Equation (A 4b) would be valid for free fall of the fluid. In this problem, the sink 
is much smaller than the cross-sectional area of the tank. Hence free-fall motion is 
impossible. The only case in which the fluid is in free-fall motion is when the sink 
covers the entire bottom of the tank. However, in the free-fall case, the free surface 
remains flat, and we still have s, = 0. Hence the second possibility is ruled out. 
Equation (A 46) means the free surface must contact the wall at 90". 

If the surface is an interface, the momentum equations are 

and 

1 - _  a ' - - - Vpd - ge,, in the lower layer, 
at P d  

1 
2- - --Vpu-gez, in the upper layer. 
av 
at w 

Thus we have s. p d , , - p , a t  = s . V ( ~ , - p d ) - ( ( p d - p , ) g s , .  ( 
At the interface, pd = p ,  since the fluid is free of viscosity and surface tension. Thus 
the pressure-difference term in (A 7)  is zero. At the intersection point, the velocity of 
both layers should be single valued. Thus the radial velocity must be zero and the 
vertical velocity must be equal for both layers. Then 

where w = wd = w, is the common vertical velocity of both layers at the intersection 
point. We see that s, must be zero by the same argument as before. 
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